Monthly Archives: March 2007

Gunnerkrigg Court

During a bout of bored web-surfing, I followed a guest-artist link from Dr. McNinja to Gunnerkrigg Court, where my boredom rapidly evaporated. By somewhere in Chapter 2 I had already decided to blog a recommendation for this webcomic. By the time I finished reading the archives, in one enthralled sitting, it was pretty much my favorite thing on the internet.
The genre is British boarding-school fantasy, but Neil Gaiman is a better point of comparison than J.K. Rowling. (In fact, Gaiman himself has also recommended Gunnerkrigg on his blog.) It’s a wonderful exploration of the interface between myths/magic and science/technology. Start at the beginning—it’s not a joke-a-day webcomic but an online graphic novel with an ongoing story.

March Meeting, Days 2 and 3

I thought about posting last night but this was pre-empted by the fact that the slides for my talk were unfinished (and also the Clarke group dinner). First I want to register a complaint:
hund's rules for conference seating
This is how physicists (or maybe everybody) fill seating at conferences. The first people to arrive take the seats on the outside of the rows, and then fill in to the middle. This is really annoying when arriving in the middle of the session and having to climb over a bunch of people to get into the one empty seat. I am aware that this is a really lame complaint, but please, fill from the middle!
Now that I’ve got that out of my system: the last couple days were a blur of superconducting qubit talks. There’s a lot going on in this field, and most groups had three or four (10-minute) talks in a row to have enough time to explain all their results. One experiment I thought was very neat was this one from Terry Orlando’s group at MIT. In flux qubits like the ones we study, one can measure the temperature by sweeping the flux bias across the degeneracy point and measuring the population of the qubit states. Higher temperatures will give wider curves, as energies further away from the degeneracy point are more likely to be populated by thermal activation. When we measure this on our qubits we usually get something like 150 mK, mysteriously somewhat higher than the fridge temperature (roughly 50 mK).
What the Orlando group did was to apply an analog of laser cooling (as in atomic physics) to their qubit, using a microwave pulse to induce transitions that ultimately cool the system. As a result they were able to see these temperatures (as measured from the widfh of the qubit step) reduced by a factor of 100, from 300 mK to 3 mK. It was pretty impressive; I’m not sure how important it is for quantum computing or whether it’s something we should be doing with our qubits, but it’s a nice application of techniques from another field.
This morning I gave my talk, which was helpfully introduced by Frank Wilhelm’s talk immediately prior, in which he said something like “the really important development for scalability is what Travis Hime will talk about next”. So the pressure was on, but I think I did ok. After this was… more qubit talks, but I was mostly decompressing after finishing mine and didn’t pay as much attention as usual.
Tomorrow I go to see talks by other Clarke group members, including John himself. And then, an evening flight back to Berkeley.

March Meeting, Day 1

bear peering in glass
Actually I spent much of today working on my talk instead of going to sessions. The superconducting qubit sessions start tomorrow morning and basically run continuously until Thursday evening. I did go to some talks in the afternoon, though, mostly in D2: Ion Traps for Scalable Quantum Computation. (In some sense this is our competition.)
Ike Chuang, who is a big name in this field, gave the first talk, which laid out the challenges in making a practical quantum computer with ion traps. Most of this dealt with error correction; according to Shannon’s theorem (or maybe a quantum information version thereof) it should be possible to build an error-free quantum computer out of qubits that do make occasional errors, as long as the failure rate is below some threshold. Unfortunately in some cases they’ve looked at this requires a prohibitively large number of operations, as many as 1020. One can try to implement various error-correcting codes, such as Shor’s or Steane’s, but certain operations that are needed for a universal quantum computer don’t work within these codes. And in fact Chuang et al. have shown that there is no stabilizer code that allows a universal set of operations to be performed within the code—one has to decode first before performing at least one of the operations.
The other talks in the session were less abstract, and thus harder to understand (since I’m not terribly familiar with this architecture). The talk by Slusher described a proposal for a VLSI-based scalable ion-trap based quantum computer, which seemed impressive, except I’m pretty sure this is the one Chuang mentioned that would require 440 watts of laser power to operate.
I skipped out on the last talk to go to D8: Superconductivity: STM of Cuprates and see what the group I worked in as an undergrad was up to. However, I haven’t thought about STM of cuprates for a while now and only had the faintest idea what they were talking about.
A tempting alternative for the end of the day was Session D33: Focus Session: Quantum Foundations II. It starts out as a perfectly normal session, but somewhere around 4:30 becomes the dumping ground for crackpots. For example:

D33.00014 : Do Particles have Barcodes?
If an elementary particle shown in Fig 2 of gr-qc/0507130 has an UNSTABLE quantum connection to the rest of the universe calibrated by nature in terms of Planck times, as also proposed in my separate MAR07 abstract, there exists a possibility that each particle has a barcode of its own. Instability implies varying periods of connections and disconnections of particles to the universe, which would be equivalent to the varying widths of white and black strips of commercial barcodes. Considering the high order of magnitude of Planck times in a second, each particle and the universe generated by its radiations may have their unique birth times registered in their barcodes. My quest for the cause of consciousness, in MAR06 abstracts, as an additional implication of physics/0210040, leads to the inquiry if these unique parallel universes are like the ones that give rise to consciousness as proposed by some physicists. With all due respect, the attempts to explain TOE of inert matter may not be attempts to explain one step to climb up on a stairway at a time. They may be attempts to explain only half a step at a time to on a stairway made with only integer number of steps. The search for TOE assumes such a theory exists. Mathematics has no barrels to fire bullets that can shoot down a non-existent bird. A Hamiltonian knows no consciousness, a missing ingredient of biology made of particles or vice versa, and of realistic TOE.

The talk after that one describes a theory of Atonic Physics [sic], which sounds like an outtake from Monty Python’s bookstore sketch.

March Meeting report: it’s on fire!

As some of you know, I am in Denver for the APS March Meeting. I haven’t been liveblogging since I couldn’t get on the network at the convention center (it doesn’t seem to have the capacity for N thousand physicists with laptops) but I may post a few updates.
Meanwhile, someone has pulled the fire alarm in the hotel. The fire alarm takes the form of a recording that says:

May we have your attention please. This is the building management. An alarm has been activated. The fire department has been notified and is responding. For your safety, the elevators will not operate until the alarm is investigated. Please stand by for further instructions.

…over and over again, with no delay between loops. I might evacuate just out of annoyance.